

Identifying Highly Nutritious Foods with Low Environmental Impacts

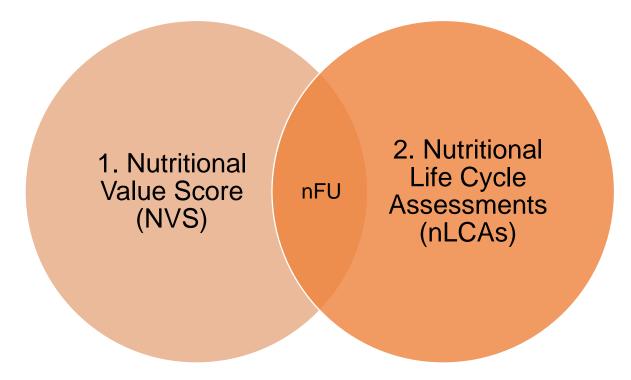
Flaminia Ortenzi, Research Associate Global Alliance for Improved Nutrition (GAIN) Email: fortenzi@gainhealth.org

ICAE 2024, Tuesday, August 6, 2024

OUR STARTING POINT

> How can we ensure access to healthy diets for all while limiting the environmental impact of food production and consumption globally?

- > Which dietary patterns should we be promoting? And **which foods** should we be **prioritizing** in policies and programs?
- > How can we identify locally available foods that offer high nutritional value with relatively low environmental impacts?



OVERVIEW OF OUR APPROACH

RESEARCH OBJECTIVE: To develop an innovative method for holistically assessing the **combined nutritional value and environmental footprint of foods** commonly consumed in a given country.

COUNTRY FOCUS: Indonesia and Bangladesh as proof-of-concept.

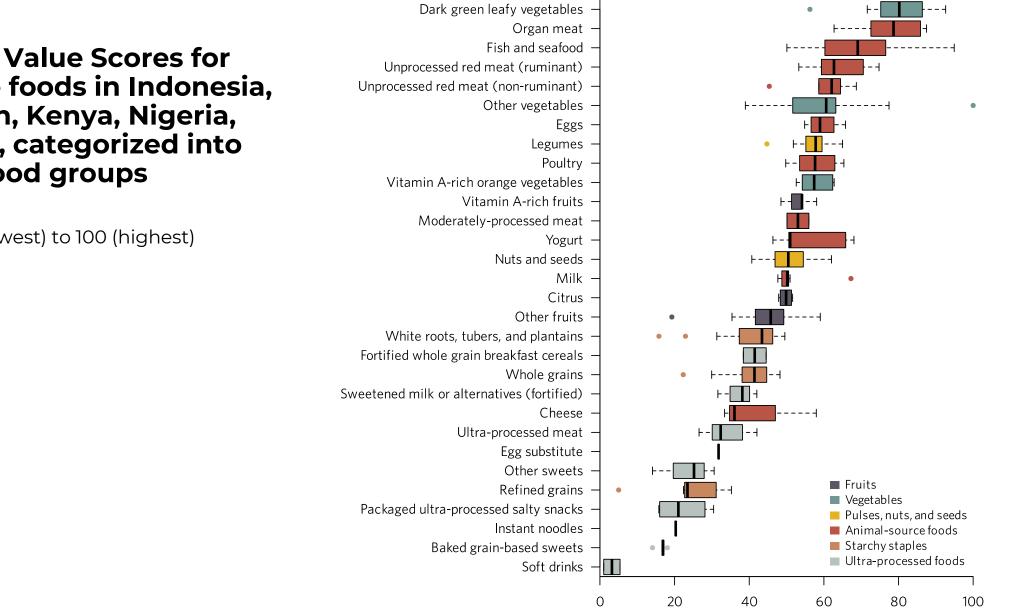
nFU: nutritional Functional Unit

COMPONENT 1: NUTRITIONAL VALUE SCORE (NVS)

What is it? A new Nutrient Profiling System (NPS) to holistically assess the relative nutritional value of individual foods, food groups, and whole diets.

What can it be used for?

- To inform **policy and programmatic** decisions on which foods to prioritize for the greatest nutritional and health impacts.
- As the denominator (i.e., nutritional Functional Unit, nFU) in
 environmental impact and affordability assessments of foods.


Nutrient ratios SFA:UFA Sodium:potassium Carb:fiber	Vitamins Folate Choline Riboflavin Thiamin Niacin Vitamin A Vitamin B6	Minerals Iron Zinc Calcium Potassium Magnesium	Protein DIAAS Protein	Omega-3 DHA EPA DPA ALA
	Vitamin B12 Vitamin C Vitamin D Vitamin E		Fiber	Calories

WHAT MAKES THE NVS UNIQUE FROM OTHER NPS?

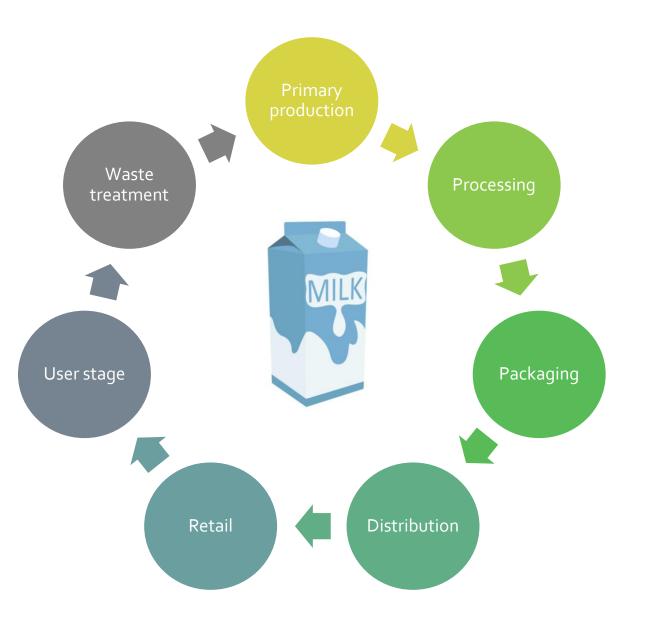
- Aligned with the latest scientific guidance on developing NPS for global application and for use in food sustainability & affordability assessments
- 2. Includes nutrients of **global health priority** exclusively
- Adjusts for
 bioavailability of iron and zinc
- 4. Considers the **quantity and quality** of protein and omega-3 fats

- 5. Quantifies nutrient density per **unit mass** *and* energy
- 6. Includes **sub-scores** for vitamins, minerals, protein, omega-3 fats, fiber, calories, and nutrient ratios
- 7. Developed using foods commonly consumed in **low**and middle-income countries
- 8. High **flexibility**: easy to adapt and apply to other countries and/or demographic groups

Nutritional Value Score

Nutritional Value Scores for 289 unique foods in Indonesia, Bangladesh, Kenya, Nigeria, and the US, categorized into common food groups

Scaled from 1 (lowest) to 100 (highest)



COMPONENT 2: NUTRITIONAL LIFE CYCLE ASSESSMENTS (nLCAs)

What is it? A methodology to quantify foods' environmental footprints throughout the life cycle per unit nutritional value (i.e., the nutritional Functional Unit, nFU), in lieu of per unit energy or mass.

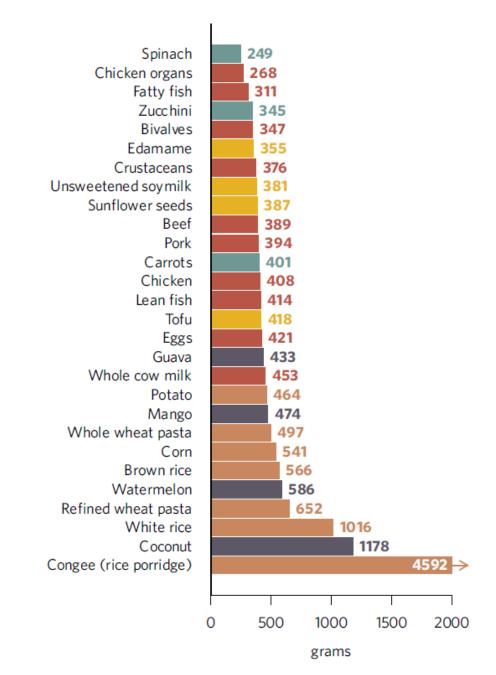
What can it be used for?

- To inform policy and programmatic decisions on which foods to prioritize for the greatest nutritional impacts with relatively low environmental impacts.
- To incentivize public and private sector **innovations** in food supply chains.

WHAT MAKES OUR nLCA APPROACH UNIQUE FROM OTHERS?

- Uses Nutritional Value Scores as the nutritional Functional Unit
- 2. Overall environmental footprints of foods summarized in a **single score** for ease of interpretation
- 3. Uses **local environmental impact data** to the extent possible, accounting for locally produced vs imported foods
- Applied to foods
 commonly consumed
 in low- and middle income countries

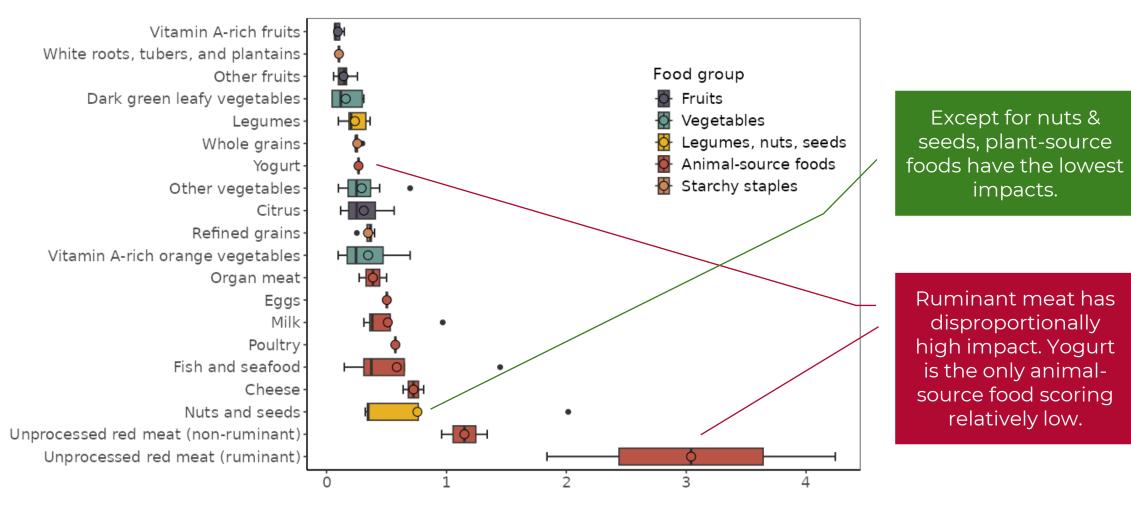
- Assesses 7


 environmental
 impact categories,
 providing sub-scores
 - for each

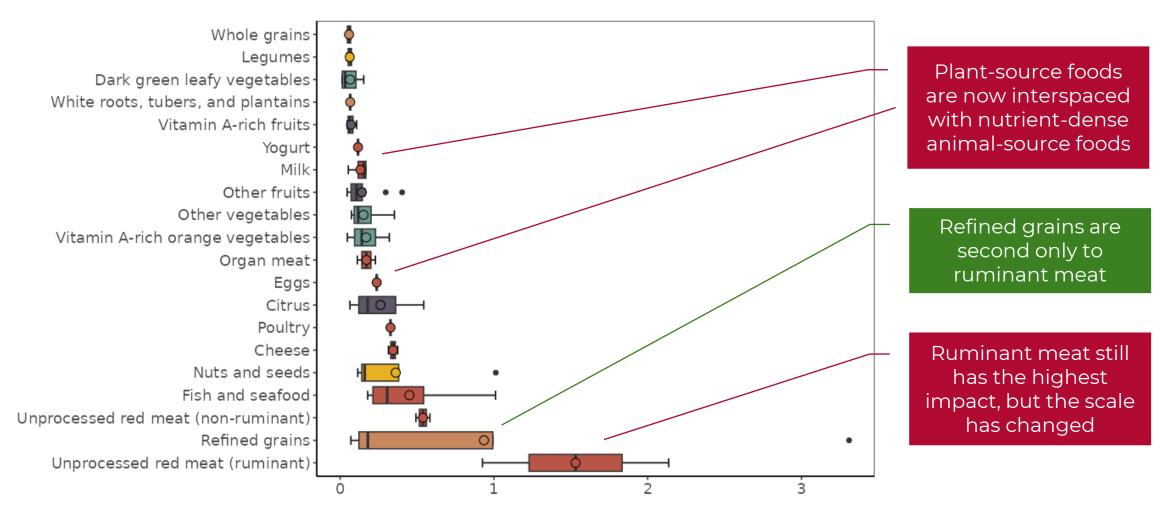
6. Adopts a **full life cycle perspective**, including home food preparation

7. High **flexibility**: easy to adapt and apply to other countries

WHY DOES THE FUNCTIONAL UNIT MATTER?

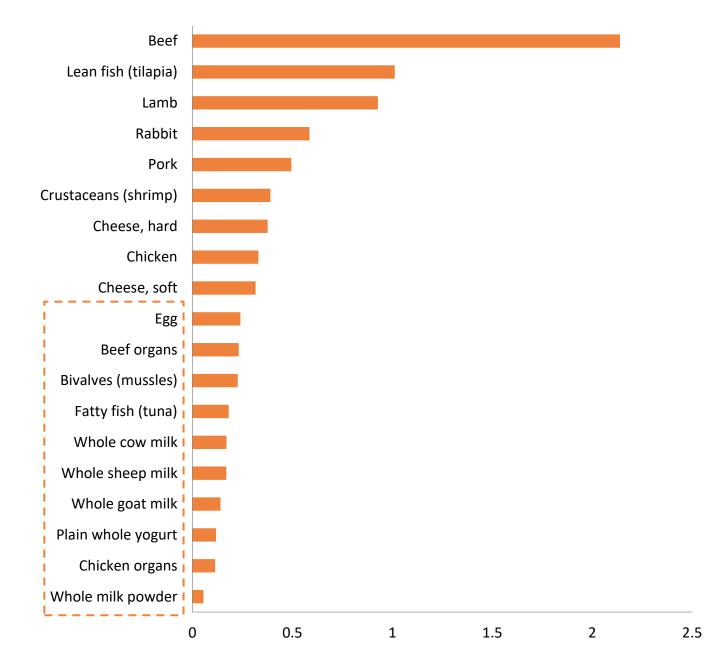

- Assessing the environmental impacts of foods per unit mass or energy fails to account for differences in nutritional value.
- Using Nutritional Value Scores as the nFU allows to standardize foods by nutritional value when comparing their environmental footprints, making the results more nutritionally-relevant.

Grams of common foods in Indonesia needed for an NVS of 100


ENVIRONMENTAL IMPACTS PER UNIT MASS (kg) vs...

Overall environmental impacts of common foods in Indonesia per unit mass (milliPoints/kg), organized by common food groups

...PER UNIT NUTRITIONAL VALUE (NVS)



Overall environmental impacts of common foods in Indonesia per unit nutritional value (milliPoints/100 NVS), organized by common food groups

Overall environmental impacts of common Indonesian animal-source foods per unit nutritional value

Expressed in milliPoints/100 NVS

- Environmental impacts show great variation not just across, but also within food groups.
- In Indonesia, minimally processed dairy (milk and yogurt), organ meats, fatty fish, bivalves, and eggs provide high nutritional value for relatively low environmental impacts.

Single score for environmental impact

Nutritional Value Scores and Environmental Impact Sub-Scores for common animal-source foods in Indonesia per unit nutritional value

CC: climate change (kg CO₂eq)
PM: particulate matter (g PM2.5eq)
TA: terrestrial acidification (g SO₂eq)
FE: freshwater eutrophication (g Peq)
ME: marine eutrophication (g Neq)
WU: water use (m³ deprivation eq)
LU: land use (m²-year crop eq)

Animal-sourced foods	Origin	NVS	CC	PM	ТА	FE	ME	WU	LU
Whole milk powder	New Zealand	52	0.70	0.90	3.3	0.11	0.25	0.06	0.63
Plain whole yogurt	France	53	1.07	3.16	6.9	0.43	0.60	0.42	0.70
Whole goat milk	DOMESTIC	52	0.97	4.43	12.2	0.43	0.76	0.55	0.93
Chicken organs	DOMESTIC	91	0.95	2.09	2.6	0.46	0.68	0.22	1.24
Whole sheep milk	DOMESTIC	52	1.30	4.72	15.2	0.42	1.22	0.14	1.95
Whole cow milk	DOMESTIC	53	1.84	4.72	10.5	0.50	1.07	0.22	1.61
Plain whole yogurt	DOMESTIC	53	1.73	3.67	9.8	0.49	1.00	0.45	1.46
Fatty fish (tuna)	DOMESTIC	83	1.27	7.06	17.4	0.31	0.09	0.12	0.01
Beef organs	Australia	84	2.56	4.69	14.8	0.66	2.71	0.88	2.44
Bivalves (<u>mussles</u>)	DOMESTIC	76	2.19	9.03	8.3	1.27	-5.15	0.45	1.46
Egg	DOMESTIC	59	1.64	5.09	20.3	0.75	1.24	1.15	2.46
Cheese, soft	New Zealand	47	4.00	5.92	19.3	0.82	1.48	0.83	3.65
Cheese, hard	New Zealand	50	4.87	6.67	23.4	0.84	1.84	0.92	4.60
Beef organs	DOMESTIC	84	4.27	8.09	32.1	0.69	1.60	1.35	2.35
Crustaceans (shrimps)	DOMESTIC	71	3.87	10.28	22.2	1.40	2.81	1.02	2.56
Chicken	DOMESTIC	57	2.66	3.95	7.1	1.12	2.24	0.60	4.32
Pork	Europe	60	4.03	10.1	38.5	1.49	3.77	1.79	5.07
Rabbit	DOMESTIC	68	6.78	45.5	24.3	4.26	4.36	2.43	5.72
Pork	USA	60	3.32	9.75	43.7	1.40	2.44	3.70	2.94
Lamb	DOMESTIC	62	10.4	13.4	56.9	2.74	8.64	4.27	15.2
Lean fish (tilapia)	DOMESTIC	60	3.64	33.3	11.3	10.3	1.90	79.4	1.32
Beef	Australia	62	23.9	31.5	147.2	4.55	29.3	8.75	26.8
Beef	India	62	43.2	71.1	343.5	4.87	17.1	14.0	25.9

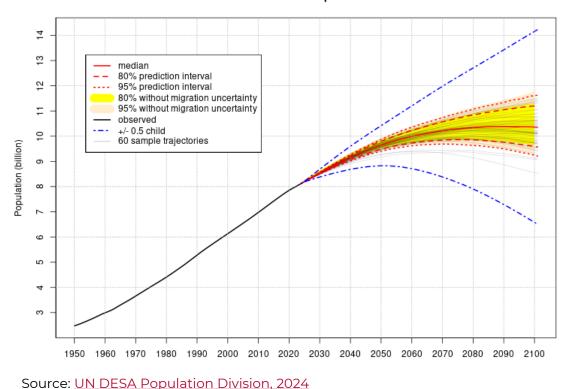
POTENTIAL USE CASES / APPLICATIONS

Thank you!

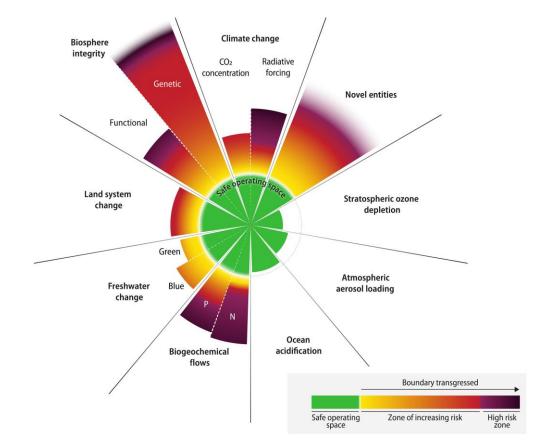
Email: fortenzi@gainhealth.org

Rue Varembé 7 1202 Geneva, Switzerland Mailing address: PO box 55, 1211 Geneva 20

Website: <u>www.gainhealth.org</u> Email: <u>info@gainhealth.org</u> ©@GAINAlliance **in** Global Alliance for Improved Nutrition


Annex slides

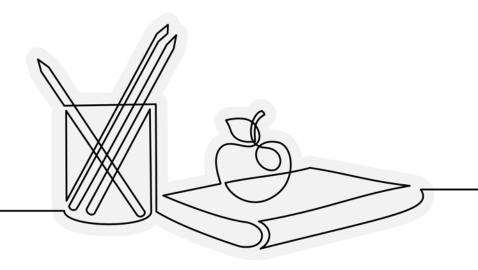
A DUAL GLOBAL CHALLENGE


Global food systems need to provide **healthy diets** for over 8 billion people currently, and an expected **9.6 billion by 2050**.

World: Total Population

2

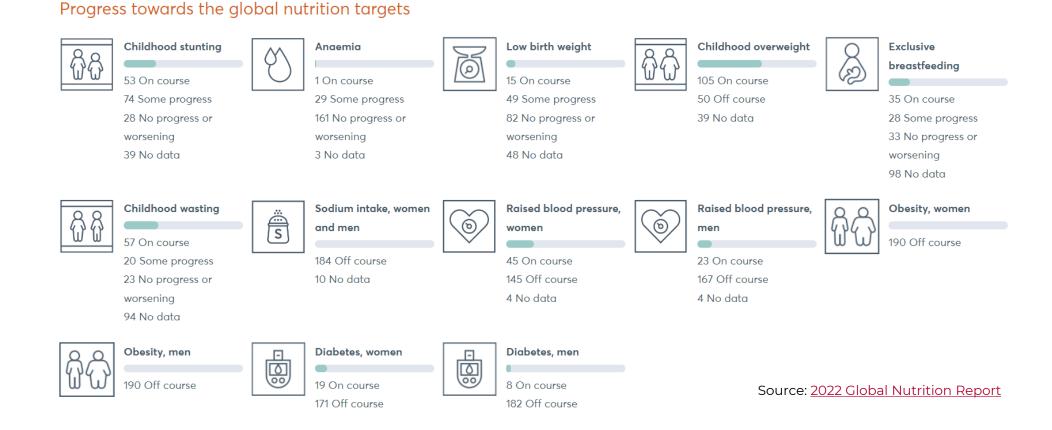
At the same time, global food systems must operate within **planetary boundaries**. As of 2023, six of the nine boundaries were transgressed, indicating unprecedented human disruption of Earth system.



Source: <u>Richardson et al., 2023</u>

OUTLINE

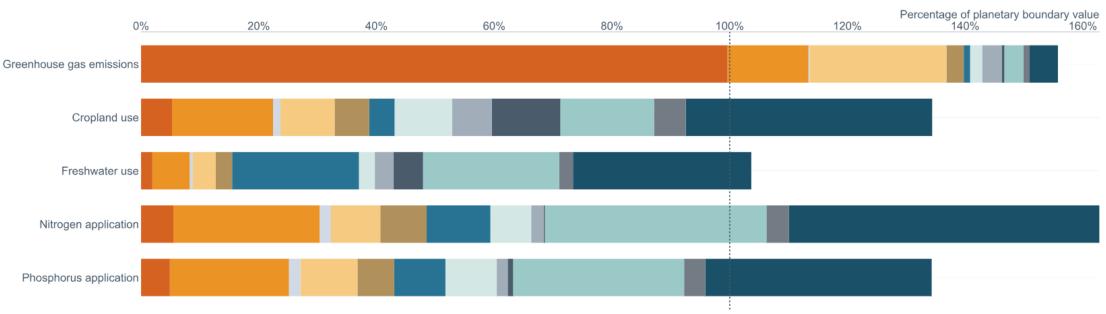
- A dual global challenge
- > Our starting point
- > Overview of our approach
- Component 1: Nutritional Value Score (NVS)
- Component 2: nutritional Life Cycle Assessments (nLCAs)
- Potential use cases / applications


THE TRIPLE BURDEN OF MALNUTRITION (1)

Overweight & obesity	 >40% of adults, ~20% of children and adolescents (5–19 y), and ~6% of young children (0-59 m) are overweight or obese >20% of adults have raised blood pressure & ~10% have diabetes
Micronutrient deficiencies	 30% of women of reproductive age (15-49 y) and 37% of pregnant women suffer from anaemia 1.6 billion children under-5 and women of reproductive age are deficient in one or more essential micronutrients
Undernutrition	 • ~9.1% of the global population (733 million people) are facing hunger • 22% of children under-5 are stunted and ~7% are wasted

THE TRIPLE BURDEN OF MALNUTRITION (1)

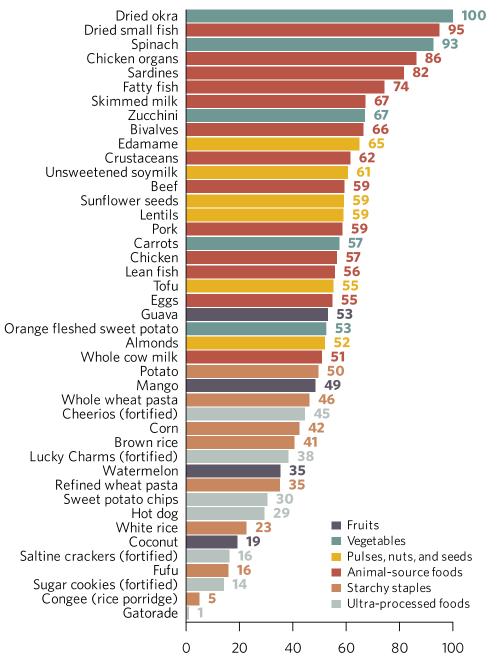
- According to the 2021 Global Burden of Disease study, poor diets represent the fourth largest contributor to disease burden worldwide, following high blood pressure, air pollution, and tobacco use (<u>GBD, 2021</u>).
- > The world is largely **off course** to meet global nutrition targets:


THE ENVIRONMENTAL IMPACT OF FOOD SYSTEMS

2

- Global food systems are responsible for:
 - o 34% of all anthropogenic greenhouse gas emissions (Crippa et al., 2022)
 - o 70% of all freshwater withdrawals (FAO, 2021)
 - The largest threat to **species extinction** due to land use change (<u>Tilman et al., 2017</u>)
- It is estimated that between 2010 and 2050, food systems' environmental footprint could increase by 50–90% without dedicated mitigation measures (<u>Springmann et al., 2018</u>).

Food system impact on planetary boundaries



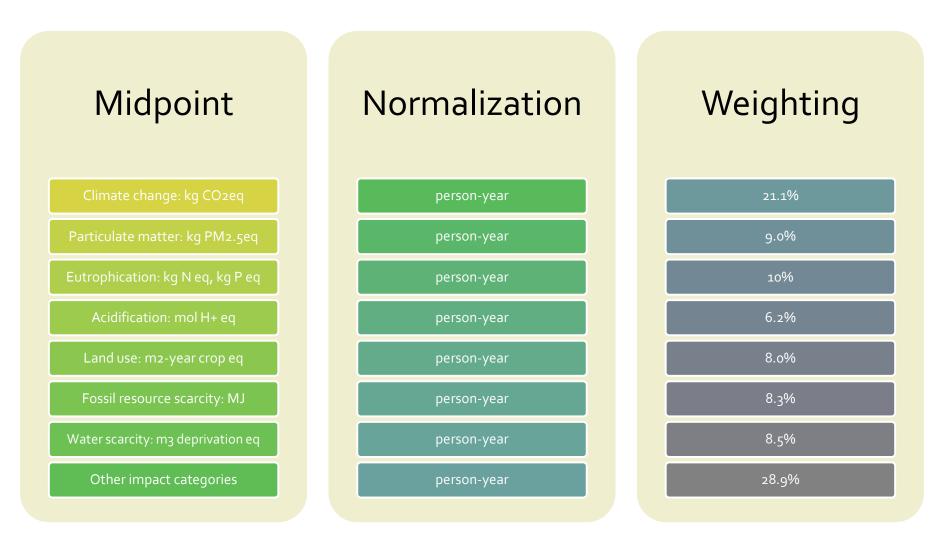
📕 Beef and lamb 📕 Pork and poultry 📗 Fish 📕 Milk 📕 Eggs 📕 Sugar 📗 Oils 📗 Nuts and seeds 📕 Legumes 📕 Fruit and vegetables 📕 Roots 📕 Grains

Source: 2022 Global Nutrition Report

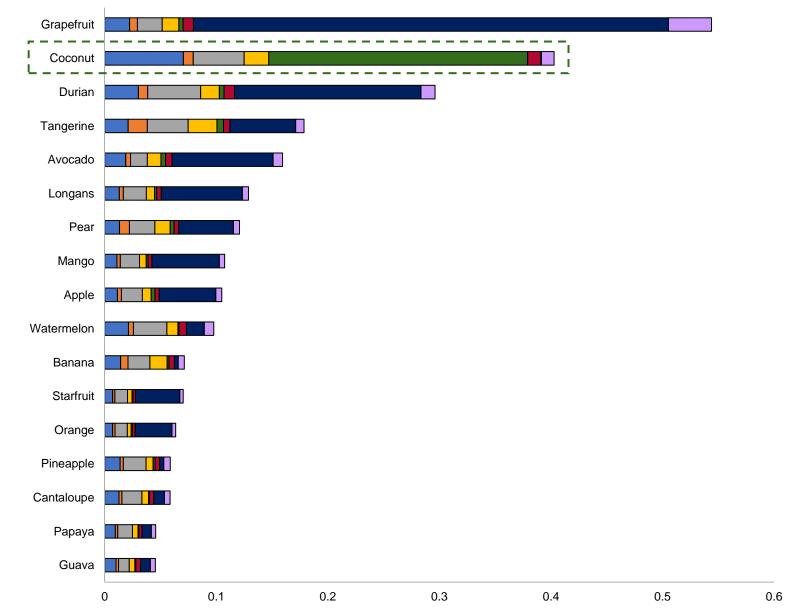
Nutritional Value Scores for common foods in Indonesia, Bangladesh, Kenya, Nigeria, and the US

Scaled from 1 (lowest) to 100 (highest)

Nutritional Value Score


KEY FINDINGS

- No foods score high across all dietary components included. Plant- and animal-source foods have complementary nutritional profiles.
- > Nutritional value varies greatly across and within food groups.
- In Indonesia, Bangladesh, Kenya, and Nigeria, the highest scoring food groups are dark green leafy vegetables, organ meat, and fish and seafood, followed by unprocessed red meat, other vegetables, eggs, legumes, poultry, and vitamin A-rich vegetables.


WHAT'S BEHIND THE SINGLE SCORE?

Environmental impacts by category of common Indonesian fruits per unit nutritional value

Expressed in milliPoints/100 NVS

- Contribution analysis allows to identify hotspots for targeted interventions.
- Water use represents the primary concern for all fruits, except for coconut, for which land use is the category contributing the most due to deforestation.

Climate change Acidification Particulate matter Eutrophication Land use Resource use (fossils) Water use Other

Category contributions to the single score for environmental impact

SUMMARY OF KEY FINDINGS

- Using Nutritional Value Scores as the nFU enables more nutritionally-relevant comparisons of foods' environmental footprints within food groups. For example:
 - Among animal-source foods in Indonesia, organ meats, minimally processed dairy, fatty fish, bivalves, and eggs have the lowest environmental impacts per unit nutritional value.
 - Among vegetables: dark green leafy vegetables, certain vitamin-A rich orange vegetables (e.g., carrots), and certain other vegetables (e.g., tomato).
 - o Among pulses, nuts, and seeds: soy-derived products.

The contribution and hotspot analyses are useful to identify the most impactful processes for each food, to design targeted mitigation policies and interventions, and incentivize technological innovation. Nutritional Value Scores and Environmental Impact Sub-Scores for common pulses, nuts, and seeds in Indonesia per unit nutritional value

CC: climate change (kg CO₂eq)
PM: particulate matter (g PM2.5eq)
TA: terrestrial acidification (g SO₂eq)
FE: freshwater eutrophication (g Peq)
ME: marine eutrophication (g Neq)
WU: water use (m³ deprivation eq)
LU: land use (m²-year crop eq)

Pulses, nuts and seeds	Origin	NVS	CC	PM	TA	FE	ME	WU	LU
Unsweetened soymilk	USA/domestic	54	0.32	1.91	0.9	0.30	0.08	0.09	0.04
Tempeh	USA/domestic	59	0.77	4.21	2.3	0.55	0.27	0.47	0.62
Tofu	USA/domestic	55	0.79	4.52	2.4	0.59	0.29	0.50	0.66
Edamame	USA/domestic	68	0.67	3.35	1.8	0.55	0.44	0.84	1.22
Peanuts	DOMESTIC	54	1.17	4.03	1.8	0.72	1.87	0.12	7.19
Peanut butter	DOMESTIC	47	1.32	4.59	2.0	0.82	2.14	0.15	8.26
Red beans	Myanmar	66	0.35	1.56	2.0	0.38	0.38	0.04	0.58
Mung beans	Myanmar	62	0.39	1.70	2.2	0.42	0.42	0.04	0.63
Sunflower seeds	China	65	0.69	4.42	3.6	0.68	0.53	2.36	1.65
Cashews	Vietnam	46	4.62	22.5	126.7	1.42	16.2	4.88	5.63

Nutritional Value Scores and Environmental Impact Sub-Scores for common pulses, nuts, and seeds in Indonesia per unit nutritional value

CC: climate change (kg CO₂eq)
PM: particulate matter (g PM2.5eq)
TA: terrestrial acidification (g SO₂eq)
FE: freshwater eutrophication (g Peq)
ME: marine eutrophication (g Neq)
WU: water use (m³ deprivation eq)
LU: land use (m²-year crop eq)

Vegetables	Origin	NVS	CC	PM	TA	FE	ME	WU	LU
Pumpkin leaves	DOMESTIC	90	0.13	0.22	0.3	0.12	0.05	0.00	0.00
Drumstick leaves	DOMESTIC	81	0.15	0.24	0.3	0.13	0.05	0.00	0.00
Sweet potato leaves	DOMESTIC	78	0.15	0.25	0.3	0.13	0.05	0.00	0.00
Tree fern	DOMESTIC	61	0.25	0.35	0.5	0.18	0.07	0.01	0.00
Water spinach	DOMESTIC	87	0.20	0.50	2.4	0.14	1.14	0.15	0.01
Green pepper	DOMESTIC	48	0.35	0.60	1.1	0.25	0.39	1.48	0.23
Carrots	DOMESTIC	60	0.31	0.66	2.1	0.24	0.33	1.48	0.19
Radish	DOMESTIC	62	0.35	1.19	6.3	0.32	2.09	0.79	0.07
Tomatoes	DOMESTIC	61	0.36	1.18	6.4	0.37	2.97	0.60	0.05
Cucumber	DOMESTIC	44	0.51	1.17	4.6	0.41	2.06	0.82	0.08
Cabbage	DOMESTIC	69	0.39	1.22	6.5	0.40	2.99	0.81	0.07
Spinach	DOMESTIC	99	0.36	1.28	7.6	0.49	3.45	1.43	0.13
Long bean	DOMESTIC	59	0.52	1.40	7.4	0.44	3.44	1.23	0.11
Chinese cabbage	DOMESTIC	84	0.47	1.40	7.6	0.40	4.10	1.47	0.13
Cauliflower	DOMESTIC	45	0.50	1.61	8.7	0.50	3.48	1.27	0.11
Zucchini	DOMESTIC	69	0.43	1.36	6.7	0.49	2.53	4.58	0.40
Chinese broccoli	DOMESTIC	82	0.48	1.93	11.8	0.56	5.39	1.83	0.16
Eggplant	DOMESTIC	41	0.65	2.09	11.5	0.59	4.81	1.15	0.10
Pumpkin	DOMESTIC	60	0.56	1.80	9.3	0.52	3.71	4.31	0.38
Broccoli	DOMESTIC	73	0.54	2.17	13.3	0.63	6.05	2.06	0.18
Bitter melon	DOMESTIC	69	0.82	2.37	13.2	0.45	6.93	5.28	0.46
Mushrooms (shiitake)	DOMESTIC	54	2.16	3.68	7.8	0.83	0.67	1.94	0.61
Green beans	DOMESTIC	61	0.69	3.02	19.7	0.63	9.22	2.53	0.22
Winged beans	DOMESTIC	54	0.78	3.41	22.3	0.71	10.42	2.86	0.25
Luffa gourd	DOMESTIC	51	0.94	2.94	16.6	0.56	8.77	6.69	0.58
Red pepper	DOMESTIC	53	1.38	5.65	36.1	1.03	4.88	2.87	1.27
Green pepper	DOMESTIC	48	1.52	6.23	39.9	1.14	5.39	3.17	1.41
Mung bean sprouts	DOMESTIC	60	0.98	5.33	6.6	1.35	1.36	0.07	2.07

LIMITATIONS OF THE nLCA APPROACH

- Uncertainty in most LCAs/nLCAs is high: small differences in environmental impacts among foods may not be meaningful.
- Inability of LCA/nLCAs to account for farm-specific production systems, including onfarm/grassland biodiversity and circularity, resulting in excessive penalization of foods facilitating circularity (e.g., ruminant meat).
- The chosen weighting system significantly affects the food rankings. Weights assigned to each impact category would ideally be context-specific.
- Existing LCA inventories primarily include data for foods commonly consumed globally, making it difficult to find data on less common foods that are important for local communities.
- Limited data on foods' environmental footprints from LMICs, forcing us to resort to proxies of variable quality when needed.

